Т.к треугольник равнобедренный, то высота проведенная к основанию является медианой, а медиана делит сторону на 2 равных части, следовательно делит основание на отрезки равные 3 см. Высота проведенная к основанию образует с основание угол равный 90 градусам. У нас получается прямоугольный треугольник к с гипотенузой 5 см и катетом 3 см. Нам надо найти еще один катет, обозначим его за х. 5^2=x^2+3^2; x^2=5^2-3^2; x^2=16; х=4,-4, т.к катет не может быть отрицательным, то -4 нам не подходит, поэтому остается 4 см ОТВЕТ: ВЫСОТА РАВНА 4 СМ
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.