аргумент комплексного числа argz - это угол между вектором, соответствующим этому комплексному числу, если изобразить его на комплексной плоскости, и положительным направлением оси ох; если считать угол против часовой стрелки, от оси к вектору, то угол будет со знаком +, если считать по часовой стрелке, то угол нужно брать со знаком -.
z = 1 - i это вектор, координаты его имеют вид (1 ; -1).
верны соотношения для угла fi = arg z:
cos fi = x / |z|
sin fi = y / |z|
здесь |z| = sqrt(x^2 + y^2) - модуль комплексного числа z (он же - длина вектора с координатами (x; y), где z = x + yi )
таким образом, получаем, |z| = sqrt ( 1^2 + (-1)^2 ) = sqrt 2
cos fi = 1 / sqrt 2
sin fi = -1 / sqrt 2
такой угол - это -pi/4
arg z = -pi/4
а) а*а*а*х*х*х*х*х = a^3*x^5; б) 3*3*х*х*х*у*у*у*у = 9*x^3*y^4; в) а*а*а+а*а*а*а*а = a^3+a^5=; г) (с+d) * (с+d) * (с+d) * (с+d) = (c+d)^4.
2.Вычислите : а) 15 во второй степени 15^2=225, 20 в третьей степени 20^3=8000, 9 в третьей степени 9^3=729;
б) 4/5 во второй степени (4/5)^2=16/25, 2/3 в третьей степени (2/3)^3=8/27, 4 целых 1/2 во второй степени (4 1/2)^2=16 1/4; в) 1.5 во второй степени 1.5^2=2.25, 2.1 во второй степени 2.1^2=4.41, 0.5 в третьей степени 0.5^3=0.125; г) (-3) в четвёртой степени (-3)^4 = 81, (-4) в третьей степени (-4)^3=-64, (-2) в пятой степени (-2)^5=-32; д) (-1/2) в третьей степени = -1/8, (-3/4) во второй степени = 9/16, (-1 целая 1/3) во второй степени = 1 1/9; е) (-1.5) во второй степени =2.25, (-0.2) в третьей степени = -0.008, (-0.1) в пятой степени = -0.00001.