На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
2
Объяснение:
(с²-10с+25)/(2с+4)×(4с+8)/(с²-25)=
((c-5)(c-5))/2(c+2) × (4(c+2))/(c+5)(c-5)=
(c-5)/2 × 4/(c+5)=
(4c-20)/(2c-10) |2 =
(2c-10)/(c-5)= ,при с=7.5
(2×7.5-10)/(7.5-5)=
5/2.5 = 2