Всё решается очень просто. Самое главное правильно сгруппировать слагаемые:
sinx+sin2x+sin3x=0
(sinx+sin3x)+sin2x=0
То выражение, что получилось в скобках раскладывается на множители по известной формуле:
sin a+sin b=2*sin (a+b)/2*cos(a-b)/2, поэтому (так как преобразования простые, то некоторые действия пропускаю)
2*sin2х*cosх+sin2x=0
sin2x(2cosx+1)=0
Осталось решить два простых тригонометрических уравнения:
sin2x=0 и cosx=-1/2
Первое уравнение решается просто: х=pi*n/2
Второе уравнение решается по формуле тригонометрии:
cosx=a, x=(+-)arccosa+2*pi*n
pi-это знаменитое число 3,14159
n-любое целое число
Вот и всё решение.
Всё решается очень просто. Самое главное правильно сгруппировать слагаемые:
sinx+sin2x+sin3x=0
(sinx+sin3x)+sin2x=0
То выражение, что получилось в скобках раскладывается на множители по известной формуле:
sin a+sin b=2*sin (a+b)/2*cos(a-b)/2, поэтому (так как преобразования простые, то некоторые действия пропускаю)
2*sin2х*cosх+sin2x=0
sin2x(2cosx+1)=0
Осталось решить два простых тригонометрических уравнения:
sin2x=0 и cosx=-1/2
Первое уравнение решается просто: х=pi*n/2
Второе уравнение решается по формуле тригонометрии:
cosx=a, x=(+-)arccosa+2*pi*n
pi-это знаменитое число 3,14159
n-любое целое число
Вот и всё решение.
18 часов, 36 часов.
Объяснение:
Пусть первый маляр может покрасить фасад за х часов, тогда второй за х+18 часов. Тогда за 1 час первый маляр выполнит 1/х часть работы, второй маляр за 1 час выполнит 1/(х+18) часть работы, вместе за 1 час они выполнят 1/12 часть работы.
1/х + 1/(х+18) = 1/12
12(х+8)+12х-х²-18х=0
12х+216+12х-х²-18х=0
х²-6х-216=0
х=-12 (не подходит) х=18 (по теореме Виета)
Первый маляр может покрасить фасад за 18 часов, второй за 18+18=36 часов.