М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lizochkascherb
lizochkascherb
17.04.2020 18:50 •  Алгебра

Використавши кожний з одночленів 2ab, -b, 4a², 3ab², -3ab, 5ab², по одному разу, складіть два многочлени стандартного вигляду . Укажіть степінь кожного з отриманих многочленів

👇
Открыть все ответы
Ответ:
kapitoshka202
kapitoshka202
17.04.2020
p(x)=a_{1}x^4+a_{2}x^3+a_{3}x^2+a_{4}x+a_{5}\\
 x=\sqrt{x_{1}}\\
 x=\sqrt{x_{1}}+b\\
 x=\sqrt{x_{1}}+2b\\
 x=\sqrt{x_{1}}+3b\\\\
 p(x)+a=a_{1}x^4+a_{2}x^3+a_{3}x^2 + a_{4}x+a_{5}+a\\
y=\sqrt{y_{1}}\\
y=\sqrt{y_{2}}\\
y=\sqrt{y_{3}}\\
y=\sqrt{y_{4}}\\\\ 




По теореме Виета для уравнение четвертой степени получаем соотношение   
4\sqrt{x_{1}}+6b = -\frac{a_{2}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+3b)+(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+...=\frac{a_{3}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b).........=-\frac{a_{4}}{a_{1}} \\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)=\frac{a_{5}}{a_{1}}\\\\ \sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}=-\frac{a_{2}}{a_{1}}\\
\sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]        

\left \{ {{4\sqrt{x_{1}}+6b=\sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}
 } \atop {\sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)-\sqrt{y_{1}y_{2}y_{3}y_{4}}=a} \right. \\

Учитывая условия что коэффициенты все выражаются в радикалах , то  сумма всех корней выраженные в радикалах есть число радикальное . 
  По третьем  равенству первой системы  \sqrt{x_{1}x_{2}x_{3}}=Rad  , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
4,5(22 оценок)
Ответ:
MostQweek
MostQweek
17.04.2020
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ