Всего у нас было 252 голоса. Известно из условия, что голоса распределились в отношении 2:7. Значит наше уравнение будет выглядеть так:
2*Х + 7*Х = 252
(Если бы у тебя было 100 голосов, а распределились бы в отношении 3:4, то уравнение было бы 3*Х + 4*Х = 100
Понятно?)
Итак, вернемся к нашему уравнению:
2*Х + 7*Х = 252
Решаем:
9*Х = 252
Х = 252/9 = 28
Но это вовсе не ответ! Смотрим на вопрос задачи: "Сколько голосов получил проигравший?"
Думаю, понятно, что при отношении 2:7 проиграл первый депутат. Так как к нему относится тут число 2, то домножаем наш Х на 2:
Х*2 = 28*2 = 56
(Если, допустим, отношение было 3:4, а Х уже найден, то кол-во голосов первого равно 3*Х)
ответ: В (56)
Решение. В данном случае объем выборки n = 15. Упорядочим элементы выборки по величине, получим вариационный ряд 2, 2, 3, 4, 4, 5, 5, 5, 7, 7, 7, 7, 10, 10. Найдем размах выборки ω=10-2= 8. Различными в заданной выборке являются элементы z1 = 2, z2 =3, z3 = 4 , z4 = 5 , z5 = 7 , z6 = 10 ; их частоты соответственно равны n1 = 3, n2=1, n3 = 2, n4 = 3 , n5 = 4, n6 = 2. Статистический ряд исходной выборки можно записать в виде следующей таблицы:
zi
ni
Для контроля правильности записи находим . При большом объеме выборки ее элементы рекомендуется объединять в группы (разряды), представляя результаты опытов в виде группированного статистического ряда. В этом случае интервал, содержащий все элементы выборки, разбивается на k непересекающихся интервалов. Вычисления упрощаются, если эти интервалы имеют одинаковую длину . В дальнейшем рассматривается именно этот случай. После того как частичные интервалы выбраны, определяют частоты - количество ni элементов выборки, попавших в i-й интервал (элемент, совпадающий с верхней границей интервала, относится к следующему интервалу). Получающийся статистический ряд в верхней строке содержит середины zi интервалов группировки, а в нижней — частоты ni (i = 1
Объяснение:
Наверное так( не моя работа, взял с другого ответа)