Пусть х рядов было в зале , по у мест в каждом ряду всего мест х*у=80 тогда после ремонта стало (х-3) ряда , по (у+4) мест (х-3)*(у+4)=84 х*у=80 (х-3)*(у+4)=84 ху=80 ху -3у+4х-12=84 ху=80 80-3у+4х-12=84 ху=80 ⇒ х=80/у 4х-3у =16 ху=80 ⇒ х=80/у 4*(80/у) -3у =16 (320/у) -3у -16=0 домножим на у , избавимся от знаменателя 320 -3у²-16у=0 3у²+16у-320=0 d= 256+3840= 4096 √d= 64 y=(-16+64)/6= 8 мест ⇒ x=80/8 =10 рядов у=(-16-64)/6 < 0 не подходит ответ : до ремонта было 10 рядов по 8 мест
y=x^4-8x^3+10x^2+1 1) Находим производную функции y'=(x^4-8x³+10x²+1)'=4x³-24x²+20x 2)Находим точки, в которых производная равна нулю: 4x³-24x²+20x=0 4x(x²-6x+5)=0 4x(x-1)(x-5)=0 x₁=0 x₂=1 x₃=5 Из полученных значений нам надо оставить лишь те, которые принадлежат заданному промежутку.
1) ОТРЕЗОК [-2;3] 0∈[-2;3] и 1∈[-2;3], a 5∉[-2;3] Значит находим значения функции в полученных стационарных точках из промежутка и на концах промежутка: у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(-2)=(-2)^4-8(-2)³+10(-2)²+1=4+64+40+1=109 наибольшее значение у(3)=3^4-8*3³+10*3²+1=81-216+90+1=-44 наименьшее значение ответ: у наим = -44; у наиб=109
2) ОТРЕЗОК [-1;7] 0∈[-1;7],1∈[-1;7], 5∈[-1;7] у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(5)=5^4-8*5³+10*5²+1=625-1000+250+1=-124 наименьшее значение y(-1)= (-1)^4-8*(-1)³+10*(-1)²+1=1+8+10+1=20 наибольшее значение
A...B {2, 3} - пересечение
!A...B {1, 5, 9, 8 , 13, 11, 18, 21, 34} - все остальное