Объяснение: Кількість команд які брали участь у турнірі позначемо х.
Перша команда тоді зіграла (х-1) кількість матчів;
Друга команда зіграла (х-2) кількість матчів;
Отже маєм арифметичну прогресію, де а₁=(х-1), а₂=(х-2),
а₃=(х-3), аₓ₋₁=1;
Різниця арифметичної прогресії d=a₂ - a₁ =(x-2) - (x-1) =
= x-2- x+1 = -1;
Сума членів цієї арифметичної прогресії і буде кількість зіграних
матчів яка рівна 36.
Отже маєм рівність: Sₓ₋₁ = ((2×(x-1) -1×(x-2))/2)×(x-1) = 36;
((2x-2-x+2)/2)= 36;
x×(x-1) = 72;
x²-x-72=0;
√D= √(b²-4ac) = √((-1)²-4×(-72)) = √(1+288)=√289=17;
x₁=(-b+√D)/2a = (-(-1)+17)/2 = (1+17)/2 = 18/2 =9;
x₂=(-b-√D)/2a= (-(-1)-17)/2 = (1-17)/2 = -16/2 = -8;
x₂= -8, - не може бути розв"язком бо є від"ємним числом.
Отже відповідь х₁=9;
Відповідь: 9 команд брало участь у турнірі.
1)Решение системы уравнений (2; 3);
2) а)Координаты точки пересечения прямых (2; -2)
Решение системы уравнений (2; -2)
2) б)Прямые параллельны.
Система уравнений не имеет решения.
3)а= -1; b=7.
Объяснение:
1. Какая из пар чисел (-5;1); (1;4); (2;3) является решением системы уравнений:
2х-7у= -17
5х+у=13
Решить систему уравнений.
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=13-5х
2х-7(13-5х)= -17
2х-91+35х= -17
37х= -17+91
37х=74
х=74/37
х=2
у=13-5х
у=13-5*2
у=3
Решение системы уравнений (2; 3)
2. Решить графическим систему уравнений:
а) у+х=0
4х+у=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
у+х=0 4х+у=6
у= -х у=6-4х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 10 6 2
Согласно графика, координаты точки пересечения прямых (2; -2)
Решение системы уравнений (2; -2)
б)х+у= -1
3х+3у= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+у= -1 3х+3у= -2
у= -1-х 3у= -2-3х
у=(-2-3х)/3
Таблицы:
х -1 0 1 х -1 0 1
у 0 -1 -2 у 0,33 -0,67 -1,67
Согласно графика, прямые параллельны.
Система уравнений не имеет решения.
3.Пара чисел (3;-2) является решением системы уравнений
2х+ау=8
bх+3у=15
Найдите значения а и b.
Подставим известные значения х и у (решение системы) в уравнения:
2*3+а*(-2)=8
b*3+3*(-2)=15
Выполняем необходимые действия:
6-2а=8
3b-6=15
Из уравнений вычисляем а и b:
-2а=8-6
-2а=2
а=2/-2
а= -1
3b=15+6
3b=21
b=21/3
b=7
х€(-oo; 0,4√5-2)U(0,6√5-2; √5-2]
Объяснение:
решение во вложении