Введём прямоугольную систему координат ХОУ с началом в вершине прямого угла треугольника. Тогда уравнение гипотенузы будет равно у = (-18/24)х + 18 = (-3/4)х + 18 = -0,75х + 18. Вписанный прямоугольник будет своей вершиной находится на гипотенузе. Его площадь будет выражаться уравнением S = x*y = =x*(-0,75х + 18) = -0,75х² + 18x. Максимум этой функции найдём с производной, приравненной 0: S' = -1,5x + 18 = 0 x = 18 / 1,5 = 12. Высота прямоугольника у = -0,75*12 + 18 = -9 + 18 = 9. Тогда диагональ равна √(12²+9²) = √(144+81) = √225 = 15.
(10*(-6))^2=3600
(10*6)^2=3600
(10*(-0,4))^2=16
(10*0,4)^2=16
(10*3)^2=900
(10*0,03)^2=0,09
(10*0,5)^2=25
(10*(-1))^2=100
(10*0)^2=0