а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.
2250 литров
Объяснение:
ответ:2250литров
Решение. Пусть было x канистр, в каждой по 50 л бензина, всего бензина 50х л.
Если взять 40-литровые канистры в количестве на 12 больше и полностью их заполнить, то по условию бензина будет больше, чем есть, а если потом удалить одну канистру, то меньше. Значит, имеем двойное неравенство:
(x + 11)*40 < 50x < (x + 12)*40
Сокращаем сначала на 10, приводим подобные, и в результате получаем такое двойное неравенство:
44 < x < 48.
Т. е. канистр было больше 44, но меньше 48.
Если взять 70-литровые канистры в количестве на 12 меньше, и полностью их заполнить, то бензина будет больше, а если убрать ещё одну, то меньше, чем есть. Значит, имеем такое двойное неравенство:
(x - 13)*70 < 50x < (x - 12)*70
Отсюда после всех преобразований:
42 < x < 45,5
Поскольку два полученных неравенства выполняются одновременно, то:
44 < x < 45,5
Количество канистр явно целое. Имеется только одно целое число, удовлетворяющее этому двойному неравенству, это 45. Значит всего было 45 канистр. А бензина 45*50 = 2250 л.
2•( √8- √4) ( √8+√4) / √2•8•4=
Объяснение:
в числителе можно применить формулу сокращённого умножения и получить. Плюс в знаменателе перемножить всё под корнем
2×8-4/ 8= 12/8=3/2 или же 1,5(если до десятичных надо)