Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
1. Ветки параболы направлены вниз, поэтому а<0;
f(0)>0, поэтому с>0;
х вершина параболы < 0, х вершины параболы =-b/2a, а < 0, следовательно b <0;
2. Ветки параболы должны быть направлены вверх, f(0)>0, х вершины должен быть меньше нуля.
ответ: В
3. График сдвинут на 2 вправо, что указывает на вычитание из аргумента и сдвинут на 2 вверх, что указывает на добавление к функции.
ответ: В
4. Это график перевернутой, сдвинутой на 3 влево и на 2 вверх параболы.
ответ: А
Если будут вопросы - обращайтесь:)
Отметьте как лучший ответ, если не сложно ❤️
2) (x+y)-x(x+y)=(x+y)(1-x)
3) m(6+n)-2(6+n)=(m-2)(6+n)
4) a(4b^2+5b+1)