Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
Первое уравнение - окружность с центром (0;1) и радиусом 1 Второе уравнение - 2 разнонаправленных прямых Нам нужно, чтобы правая прямая касалась окружности, а левая пересекала ее. Зададим условие касания правой прямой.
(а²-b²+c²)-(a²+c²-b²)-(b²-c²)=c²-b²
a²-b²+c²-a²+b²-c²-b²+c²=c²-b²
a²-a²-b²-b²+b²+c²-c²+c²=c²-b²
-b²+c²=c²-b²
c²-b²=c²-b²
c²-b² ≡ c²-b² при любых значениях b и c