9x²- 4y² = 5.
(3х)²-(2у)²=5
(3х-2у) *(3х+2у) = 5
5 - число простое.
Произведение его множителей имеет 4 варианта из целых чисел:
5 = 1 · 5
5 = 5 · 1
5 = (-1) · (-5)
5 = (-5) · (-1)
Рассмотрим каждый из вариантов.
1 вариант.
(3х-2у) *(3х+2у) = 1*5
Получаем систему:
{3х-2у = 1
{3х+2у = 5
Сложим эти уравнения и получим:
3х-2у+3х+2у=1+5
6х = 6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у =5
2у=5-3
у=2 : 2
у=1
Получаем первую пару целых чисел:
х=1
у=1
2 вариант
(3х-2у) *(3х+2у) = 5*1
Получаем систему:
{3х-2у = 5
{3х+2у = 1
Сложим эти уравнения и получим:
6х=6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у=1
2у=1-3
2у = -2
Получаем вторую пару целых чисел:
х=1
у=-1
3 вариант
(3х-2у) *(3х+2у) = (-1) · (-5)
Получим систему:
{3х-2у = -1
{3х+2у = -5
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1) +2у = -5
2у=-5+3
2у=-2
у=-1
Получаем третью пару целых чисел:
х = -1
у = -1
4 вариант
(3х-2у) *(3х+2у) = (-5) · (-1)
Получим систему:
{3х-2у = -5
{3х+2у = -1
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1)+2у = -1
2у=3-1
у=1
Получаем четвёртую пару целых чисел:
х = -1
у = 1
ответ: (1; 1), (1; -1); (-1; -1); (-1; 1)
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно