1) графический; метод интервалов; выделения квадрата двучлена.
2)смотри это линейные неравенства
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
3)Пересечение множеств - это множество, которому принадлежат те элементы которые есть в КАЖДОМ из пересекаемых множеств.
1 cпособ. n³+m³+k³=(n³-n)+(m³-m)+(k³-k)+(n+m+k)=n(n²-1)+m(m²-1)+k(k²-1)+(n+m+k)=(n-1)n(n+1)+(m-1)m(m+1)+(k-1)k(k+1)+(n+m+k). Т.к. произведение трех последовательных чисел делится на 6 и по условию n+m+k тоже делится на 6, то все доказано.
2 cпособ. Куб числа имеет такой же остаток при делении на 6, как и само число (это легко проверить, перебрав все числа вида 6k, 6k+1, ... 6k+5). По условию n+m+k делится на 6, т.е. сумма остатков от деления n, m, k делится на 6, а значит и сумма остатков кубов (у них те же остатки) тоже делится на 6.
Если n+m+k≡0 (mod 6), то n+m≡-k(mod 6). Значит -k³≡(n+m)³=n³+m³+3nm(n+m)≡n³+m³-3nmk (mod 6). Т.е. n³+m³+k³≡3nmk (mod 6). Т.к. среди чисел n, m, k обязательно есть четное (иначе их сумма была бы нечетным числом и значит не делилась бы на 6), то 3nmk≡0 (mod 6), т.е. n³+m³+k³≡0 (mod 6).
1) графический; метод интервалов; выделения квадрата двучлена.
2)смотри это линейные неравенства
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
3)Пересечение множеств - это множество, которому принадлежат те элементы которые есть в КАЖДОМ из пересекаемых множеств.
4) Общая сумма, количество
Объяснение:
Я не уверена в ответе!