Объяснение:
По формулам sin 7x * sin x = 1/2*[cos(7x - x) - cos(7x + x)] = 1/2*(cos 6x - cos 8x) sin 3x * sin 5x = 1/2*[cos(5x - 3x) - cos(5x + 3x)] = 1/2*(cos 2x - cos 8x) По уравнению cos 6x - cos 8x = cos 2x - cos 8x cos 6x = cos 2x По формуле тройного аргумента cos 3a = 4cos^3 a - 3cos a cos 6x = 4cos^3 2x - 3cos 2x = cos 2x 1) cos 2x = 0 2x = Pi/2 + Pi*k x = Pi/4 + Pi/2*k 2)4cos^2 2x - 3 = 1 cos^2 2x = 1 cos 2x = -1 2x = Pi + 2Pi*k x = Pi/2 + Pi*k 3) cos 2x = 1 2x = 2Pi*k x = Pi*k ответ: x1 = Pi/4 + Pi/2*k, x2 = Pi/2 + Pi*k, x3 = Pi*k
f(2) f(5) f(8,1) f(11,8)
Объяснение:
Можно было бы просто подставить все значения и выбрать из них большие и меньшие, но мы пойдем другим путем.
найдем координату вершины параболы, по формуле -b/2а=-16/2*(-4)=-16/-8=2. прямая х=2 это ось симметрии. т.к. а меньше нуля, то ветви параболы направлены вверх, а значит точка 2 - точка максимума( в ней функция достигает наибольшего значения функции), значит f(2) будет последним, а дальше, чем больше модуль, тем меньше значение функции, следовательно первым запишем f(5), потом 8,1 потом 11,8. ответ объясняем тем, что чем больше значение переменной относительно точки 2, тем меньше значение функции.