Пусть изначальное число xy, т.е х десятков и у единиц. ху=10х+у сумма цифр равна 10, т.е х+у=10 переставили цифры: ух, теперь ух=10у+х цифру единиц увеличили на 1, т.е. 10у+х+1 и раз новое число в 2 раза больше изначального можно составить уравнение: 10у+х+1=2(10х+у) 10у-2у=20х-х-1 8у=19х-1 выразим из первого уравнения х+у=10: у=10-х 8(10-х)=19х-1 19х+8х=80+1 27х=81 х=3 тогда у=10-х=10-3=7 получилось число 37 проверяем сумма цифр: 3+7=10 Если цифры этого числа переставить и цифру единиц нового числа увеличить на 1: получаем 73+1=74 и 74/2=37
2 Сos² 2x -1 +Cos 2x = 0 2 Cos² 2x - Cos x -1 = 0 Решаем как квадратное a) Cos 2x = 1 б) Cos 2x = -1/2 2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z x = +- π/3 + πn,где n∈ Z Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток Разберёмся с указанным отрезком на числовой прямой -π -π/2 0 π/3 а) х = πк,где к ∈Z k = -1 x = -π ( попадает в указанный отрезок) к = 0 х = 0 ( попадает в указанный отрезок) к = 1 к = 2 х = 2π( не попадает в указанный отрезок) б) х = +- π/3 +πn,где n ∈Z n = 0 x = +-π/3 (попадает в указанный отрезок) n = 1 х = π/3 + π( не попадает) х= - π/3 +π ( не попадает) n = -1 x = π/3 - π = -2π/3( попадает) х = -π/3 -π(не попадает)
ответ: a) .