F(x) = (x+2)/(2x+1) Значение f(1) f(1) = (1+2)/(2*1+1) = 3/3 = 1 А если надо производную f ' (1), тогда так f ' (x) = (1*(2x+1) - (x+2)*2)/(2x+1)^2 = (2x+1-2x-4)/(2x+1)^2 = -3/(2x+1)^2 f ' (1) = -3/(2*1+1)^2 = -3/3^2 = -1/3
Чтобы определить координатные четверти, в которых находятся углы, нужно изобразить тригонометрический круг Угол 129° находится между углами 90° и 180° Значит, угол 129° находится во 2-ой четверти Аналогично с углом 235° Угол 235° находится в 3-й четверти, т.к. заключён между углами 180° и 270° Чтобы определить четверти отрицательных углов, идём в противоположном направлении от 0, т.е. по часовой стрелке, а не против Тогда угол -174° будет находиться между -90° и 180° Угол -174° находится в 3-й четверти Также угол -18° находится в 4-ой четверти Угол 900° на сумму углов 900°=360°+360°+180° Углы 360° уже не берём во внимание, угол 900° Угол 180° будет находиться во 2-ой четверти Значит, и угол 900° будет находиться в 3-й четверти
Значение f(1)
f(1) = (1+2)/(2*1+1) = 3/3 = 1
А если надо производную f ' (1), тогда так
f ' (x) = (1*(2x+1) - (x+2)*2)/(2x+1)^2 = (2x+1-2x-4)/(2x+1)^2 = -3/(2x+1)^2
f ' (1) = -3/(2*1+1)^2 = -3/3^2 = -1/3