14
Объяснение:
x кг - съедает одна корова
у кг - съедает а один баран
составим систему уравнений
x+3y=22
3x+y=34
Сложим:
4x+4y=22+34
4(x+y)=56
4(x+y)=4*14
x+y=14 - съедают 1 баран + 1 корова
Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.
Постройте график функции у=х2-2х-8. Найдите с графика:
а) значение у при х=-1,5;
б) значение х, при которых у=3;
в) нули функции; промежутки, в которых у>0 и в которых у<0;
г) промежуток, в котором функция возрастает.
Для построения вычислим коорд. вершины: х0=-(-2)/2=1, у0=у(1)=1-2-8=-9
Нули ф-ции: у=0 х2-2х-8=0 х1=-2, х2=4
а) х=1,5 у≈ -8,75
б) х ≈ 4.5
в) Нули: х=-2; х=4
y>0 при х<-2 и х>4
y<0 при x€ (-2;4)
г) у возрастает при х>1 (1; +∞)
liliana
Администратор ( +3063 )
22.11.2014 21:50
Комментировать
№ 1. Построить график функции у=х2-2х-3, где х€(-∞;+ ∞) и определить область значения этой функции при указанных х.
График - парабола, ветви направлены вверх. Строится по схеме.
1) Находим нули функции, решая уравнение х2 -2х -3 = 0;
х1=-1; х2=3.
2) Координаты вершины параболы: х0=-b/(2a) = 2/2=1;
y0 = y(1) = 1-2-3 = -4
3) Найдем координаты точки пересечения графика с осью ОY:
x=0; y=-3.
4) Строим график по найденным точкам. Ось симметрии - прямая х=1
Можно вычислить значение функции в дополнительной точке, например, х=-2.
Получим у(-2) = 4+4-3= 5.
Область определения D(y)=R
Область значений Е(у)=[4; +∞).
Объяснение:
14 кг
Объяснение:
Пусть одна корова съедает y кг, а один баран x кг, тогда составим систему уравнений
3x+y=22
x+3y=34
4x+4y=22+34=56
4(x+y)=4*14
x+y=14 - съедают 1 баран + 1 корова