На первом складе было 300т угля, а во втором 178т. С первого ежедневно увозили 15т угля, а во втором 18т. Через сколько дней, на первом складе будет в 3 раза больше т угля, чем во втором ?
Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
Объяснение:
Х - количество дней.
300 - 15Х - первый склад;
3 * (178 - 18Х) - второй склад.
300 - 15Х = 3 * (178 - 18Х );
300 - 15Х = 534 - 54Х;
- 15Х + 54Х = 534 - 300;
39Х = 234;
Х = 234 / 39;
Х = 6 дней.