Функция задана уравнением y = x² – 4x - 5
Это парабола ,ветви вверх. Область определения :х-любое, множество значений функции [ -9; +∞) ;
а) Найдите вершину параболы
х₀=-в/2а, х₀=-(-4)/2= 2 , у₀=2²-4*2 -5= -9 , ( 2; -9).
Тогда наименьшее значение функции у=-9 ( при х=2)
Наибольшего значения нет ;
b) В какой точке график данной функции пересекает ось ОY.
Точки пересечения с оу ( х=0)
у= 0²- 4*0-5=-5, Точка (0; -5).
c) Найдите точки пересечения графика функции с осью ОХ.
Точки пересечения с осью ох( у=0)
x²- 4x-5=0 , Д=36 , х₁=(4+6)/2=5, х₂=(4-6)/2=-1. Точки (5;0) , ( -1;0).
d) Запишите уравнение оси симметрии графика данной функции :
х=2.
e) Постройте график функции.Смотри ниже
f) Найдите промежутки возрастания убывания функции
Функция убывает при х≤ 2 ,
функция возрастает при x≥2;
Промежутки знакопостоянства функции :
+ . - .+
______(-1)_______(5)_______
у>0 при х <-1 и x>5
у<0 при -1 <х< 5 ;
Доп. точки у= x²- 4x-5:
х: -2 1 6
у: 7 -8 7
<> [ Здравствуйте, Kamo173286! ] <>
—
<> [ • ответные Объяснения: ] <>
—
В качестве изображения прилагаются цифры на основе системы нумерации Майя.
—
В нумерации Майя мы должны учитывать, что ноль представлен овалом. От 1 до 19 они следуют графическому шаблону, через точки и линии.
—
От 1 до 5: очки складываются, т. е.:
1: •
2: • •
3: • • •
4: • • • •
Начиная с 5, он представлен прямой: — .
—
С 6 по 9 используется прямая плюс количество точек, то есть: 6: прямая и одна точка, 7: прямая и две точки, 8: прямая и три точки, 9: прямая и 4 точки.
—
Это двадцатая система нумерации, поскольку она основана на числе 20. В зависимости от уровня числа ваш множитель будет 20:
—
Уровень 1: ×20 = = 1
Уровень 2: × 201 = 20
Уровень 3: × 202 = 400
—
<> [ С уважением, Hekady! ] <>
Даны точки А(2;3;-1) и прямая (х-5)/3=у/2=(z+25)/-2.
Из уравнения прямой получим: s = 3; 2; -2 это направляющий вектор прямой;
M1 = 5; 0; -25 это точка, лежащая на прямой.
Тогда вектор M0M1 = {M1x - M0x; M1y - M0y; M1z - M0z} =
= (5 - 2; 0 - 3; -25 - (-1)) = (3; -3; -24).
Площадь параллелограмма лежащего на двух векторах M0M1 и s:
S = |M0M1 × s|
M0M1 × s =
i j k
3 -3 -24
3 2 -2
= i(-3·(-2) - (-24)·2) - j(3·(-2) - (-24)·3) + k(3·2 - (-3)·3) =
= i(6 + 48) - j(-6 + 72) + k(6 + 9) = 54; -66; 15.
Зная площадь параллелограмма и длину стороны найдем высоту (расстояние от точки до прямой):
d = |M0M1×s|
|s|
= √(54² + (-66)² + 15²)
√(3² + 2² + (-2)²) =
= √7497
√17
= √441 = 21.