Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
1) 2х - 3(1 + х) = 5 + х 2) 2(3 - х) + 7х = 4 - (3х + 2)
2х - 3 - 3х = 5 + х 6 - 2х + 7х = 4 - 3х - 2
2х - 3х - х = 5 + 3 - 2х + 7х + 3х = 4 - 2 - 6
- 2х = 8 8х = - 4
х = 8 : (-2) х = - 4 : 8
х = - 4 х = - 0,5
Задача. Пусть х - задуманное число:
3х - 10 = 0,5х
3х - 0,5х = 10
2,5х = 10
х = 10 : 2,5
х = 4
Проверка: 4 * 3 - 10 = 0,5 * 4
12 - 10 = 2 - полученное число вдвое меньше задуманного
ответ: Лена задумала число 4.
ответ:
.