Функция f(x) = x^3 - 3x имеет 2 критические точки. х = -1 - точка максимума; х = 1 - точка минимума.
Объяснение:
Решение задачи.
Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует.
Функция f(x) = x^3 - 3x имеет производную на всем числовом интервале. Найдем точки, в которых производная функции f(x) равна нулю.
f'(x) = 3x^2 - 3;
3x^2 - 3 = 0;
3 * (x - 1) * (x + 1) = 0;
Уравнение имеет 2 корня, х = -1 и х = 1.
Функция f(x)=x^3-3x имеет 2 критические точки х = -1 и х = 1.
Определим, являются критические точки точками минимума или максимума.
f''(x) = 6x.
f''(-1) = - 6 < 0, х = -1 - точка максимума.
f''(1) = 6 > 0, x = 1 - точка минимума
Дано 2019-значное число, записанное с цифр 1, 3 и 5. Делитель этого числа называется веселым, если его последняя цифра равна 7. Докажите, что меньше половины всех делителей числа являются веселыми.
посмотреть в олимпиаде
Комментарий/решение:
пред. Правка 4 210 месяца 16 дней назад #
Пусть
- все делители данного числа, отличные от 1 и от самого числа.
Рассмотрим пары
и
Произведение в каждой паре даёт данное число. Если оба делителя в одной паре - веселые, то данное число оканчивается на 9, что невозможно. Следовательно, в каждой паре не больше одного веселого делителя. Весёлых не больше [n/2]. А делителей, включая 1 и само число, n + 2
Miron.yurk
d1,d2dn
Отсюда, число в квадрате всегда положительно, при умножении на отрицательное число оно всегда остается отрицательным при любом значении х. Если прибавить отрицательное число - аналогично)