Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
N = n*k+0,75*4*n= n* (k+3) Для начала мы знаем, что все обычные места (не откидные) заняты. Чтобы вычислить кол-во людей на них, надо умножить кол-во рядов (n) на кол-во кресел в каждом (K) Теперь откидные кресла. Так как осталось 25 % свободно,занято 100-25=75%. Чтобы проценты перевести в числовой эквивалент, надо 75 разделить на 100, получим 0,75 Всего откидных кресел 4 (в каждом ряду) умноженное на кол-во рядов, то есть на все те же N. Итого у нас занято откидных кресел 0,75*4*n Складываем зрителей на обычных и откидных креслах, выносим общий множитель (n) за скобки и производим умнижение известных чисел (0,75*4=3) В итоге получаем N = n* (k+3)
Объяснение:
на 1 фото метод Гаусса
на 2 фото метод Крамера