Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
12х²+(с-9)х+3=0
Д=(с-9)²-4×12×3=с²-18с-63
1. с2-18с-63>0
с€(-&;-3)U(21;+&) -два действительных корня
2. с²-18с-63=0
с1=-3;с2=21 - один действительный корень
3. с²-18с-63<0
с€(-3;21) - нет действительных корней
с€(-&;-3]U[21;+&)
PS:
-& минус бесконечность
+& плюс бесконечность