1. 3х - 3
2. -11
3. 7х - 1
4. -20
5. 5
6. 2х - 9
7. 2
8. 7х - 10
9. -19
10. 7х - 5
Объяснение:
1. 3(х+4) - (3-х) - х - 4 = 3х + 4 - 3 + х - х - 4 = 3х - 3
2. x + 4 - 5(2-х) - (5+1)х - 5 = х + 4 - 10 + 5х - 5х - х - 5 = 4 - 10 - 5 = -11
3. 4(x+4) - 4(3-х) - x - 5 = 4х + 16 - 12 + 4х - х - 5 = 4х + 4х - х + 16 - 12 - 5 = 7х - 1
4. x + 2 - 4(5-х) - (4+1)х - 2 = х + 2 - 20 + 4х - 4х - х - 2 = -20
5. 2(x+4) - (1-x) - (1+2)х - 2 = 2х + 8 - 1 + х - х - 2х - 2 = 8 - 1 - 2 = 5
6. x + 2 - 2(5-х) - x - 1 = х + 2 - 10 + 2х - х - 1 = 2 - 10 - 1 + 2х = -9 + 2х = 2х - 9
7. 4(x+2) - (1-x) - (1+4)х - 5 = 4х + 8 - 1 + х - х - 4х - 5 = 8 - 1 - 5 = 2
8. 4(х+2) - 4(4-x) - x - 2 = 4х + 8 - 16 + 4х - х - 2 = 4х + 4х - х + 8 - 16 - 2 = 7х - 10
9. 3(х+1) - 4(5-х) - (4+3)х - 2 = 3х + 3 - 20 + 4х - 4х - 3х - 2 = 3 - 20 - 2 = -19
10. 3(x+3) - 5(2-х) - x - 4 = 3х + 9 - 10 + 5х - х - 4 = 3х + 5х - х + 9 - 10 - 4 = 7х - 5
S1=80 cм2
S2=245 см2
Объяснение:
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия k=4/7, но нам неизвестна площадь ни одного треугольника, а известна только сумма площадей S1+S2=325.
Обозначим:
S1 - площадь первого треугольника
325-S1=S2 - площадь второго треугольника
Составим отношение:
S1/(325-S1)=(4/7)^2
Возводим в квадрат дробь справа:
S1/(325-S1)=16/49
По правилу креста:
S1*49=16*(325-S1)
49*S1=5200-16*S1
49*S1+16*S1=5200
65*S1=5200
S1=5200:65
S1=80 cм2
Площадь второго треугольника 325-S1=325-80=245 см2