По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Объяснение:
1.
Функция квадратичная, графиком является парабола.
Коэффициент а = 1/4 > 0, значит ветви параболы направлены вверх.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈ [ 0 ; + ∞ ).
2. у = - 2х²
Функция квадратичная, графиком является парабола.
Коэффициент а = - 2 < 0, значит ветви параболы направлены вниз.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈( - ∞ ; 0 ]