Задача 1. Плоскость разделена на части прямыми. Докажите, что эти части можно раскрасить в два цвета так, что соседние куски будут раскрашены в разные цвета.
Рассмотрим в этой плоскости вершины равностороннего треугольника со стороной 1 метр. Поскольку цветов всего 2, то по принципу Дирихле хотя бы две из трёх вершин обязаны быть одного цвета.
ответ: ответ: один ученик побывал и в кино, и в театре, и в цирке. Пошаговое объяснение: РЕШЕНИЕ. Пусть х – количество учащихся, которые побывали и в кино, и в театре, и в цирке. Тогда (6-х) –количество учащихся, побывавших и в кино, и в театре; (10-х) - количество учащихся, побывавших и в кино, и в цирке; (4-х) - количество учащихся, побывавших и в цирке, и в театре. Известно, что в кино побывало 25 человек, найдём, сколько ребят посетило только кино: 25 – (6 – х) – (10 – х) –х = 25-6+х-10 +х-х=9+х Аналогично найдём, сколько ребят посетило только театр: 11 -(6 – х) – (4 – х) – х =11-6+х-4+х-х=1+х Аналогично найдём, сколько ребят посетило только цирк: 17 - (10 – х) - (4 – х) – х = 17-10+х – 4 +х –х=3+х Т.к. двое учеников не посещали никакие увеселительные заведения, то количество активных ребят равно 36 - 2 = 34. Составляем уравнение: Х+4-х+10-х+6-х+9+х+1+х+3+х = 34 Х+33=34 Х=1 (уч) – посетил и кино, и театр, и цирк.
А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
Рассмотрим в этой плоскости вершины равностороннего треугольника со стороной 1 метр. Поскольку цветов всего 2, то по принципу Дирихле хотя бы две из трёх вершин обязаны быть одного цвета.