А).a₆=15, a₁₂= 18. a₂₀-? a₆=a₁+5d=15 a₁₂=a₁+11d=18 a₁₂-a₆=11d-5d=3, 6d=3, d=3/6=0,5 a₆=a₁+5*0,5=a₁+2,5=15, a₁=15-2,5=12,5 a₂₀=a₁+19d=12,5+19*0,5=12,5+9,5=22. a₂₀=22. б).а₇=-3, а₁₂=12 , а₁₈=26 Запишем формулу n-ного члена а.п. an=a₁+(n-1)d a₇=a₁+6d=-3 a₁₂=a₁+11d=12 a₁₂-a₇=11d-6d=12-(-3)=15,5d=15, d=15/5=3. a₁+11·3=12, a₁=12-33=-21 a₁₈=a₁+17d=-21+17·3=-21+51= 30 ответ: нет Второе решение: а₇=-3,а₁₂=12,а₁₈=26.Являются ли данные числа членами ариф.прогрессии? Нет.Потому что первые два числа кратны 3,а третье число-нет,оно равно 26 и не равно 3.
У нас дано условие задачи: машина движется по шоссе с постоянной скоростью 70 км/ч. Нам необходимо вычислить расстояние, которое проехала машина за 5 ч. Но для начала зададим функцию аналитически. Мы должны выяснить, что у нас является аргументом и значением функции в данной задачи. Мы понимаем, что расстояние зависит от времени, т.е. сколько часов мы проведём в пути, такое расстояние и проедем. Значит, записываем функцию: S(t)=70t. Теперь находим расстоние, если время, проведённое в дороге, равняется 5 ч.S(5)=70⋅5= 350км
ответ:(0;-48)
Объяснение:
1)Найдём абсциссы точек пересечения графика с осью абсцисс:
x⁴-2x²-8=0
пусть х²=у≥0 ⇒ у²-2у-8=0
D=4+32=36 >0
y₁= (2+6)/2=4
y₂=(2-6)/2=-2<0 (не удовл условию у≥0)
Если у=4, то х²=4 ⇒ х₁=2, х₂=-2 (абсциссы точек пересечения графика с осью абсцисс)
2)Найдём уравнение касательной к кривой y=x⁴-2x²-8 в точке с абсциссой x₀₁ = 2.
Запишем уравнения касательной в общем виде:
y = y₀ + y'(x₀)(x - x₀)
По условию задачи x₀₁= 2, тогда y₀ = 2⁴-2*2²-8=16-8-8=0
Теперь найдем производную:
y' = (x⁴-2x²-8)' = 4х³-4x
следовательно: y'(x₀)=у'(2) = 4·2³-4·2 = 32-8=24
Тогда уравнение касательной в точке с абсциссой х₀₁=2:
y=0+24(x-2)=24х-48 или y = 24x-48 (уравнение первой касательной)
3) Найдём уравнение касательной к кривой y=x⁴-2x²-8 в точке с абсциссой x₀₂ = -2.
По условию задачи x₀₂= - 2, тогда y₀=y₀₂ = (-2)⁴-2·(-2)²-8=16-8-8=0
y' = 4х³-4x
следовательно: y'(x₀₂)=у'(-2) = 4·(-2)³-4·(-2) = -32+8=-24
Тогда уравнение касательной в точке с абсциссой х₀₂= -2:
y=0-24·(x+2)=- 24х-48
y=-24x-48 (уравнение второй касательной)
4)Найдём точку пересечения этих касательных:
24x-48= -24x-48
48х=0
х=0 ⇒ у=24·0-48== -48 ⇒ (0; -48) точка пересечения этих касательных