Что надо сделать, чтобы Y был максимален? Надо, чтобы [2*sqrt(x^2+4)] был отрицателен и тогда наша функция будет увеличиваться, Но у нас стоит корень, к тому же, ЧЕТНЫЙ, а т.к. корень квадратный всегда положительный должен быть(для школьников, а не студентов), то получается, что выражение sqrt(x^2+4)>=0 и уменьшаться эта часть не может, а только расти. Если эта часть будет расти, то и будет расти вычитание из 7, а значит функция Y будет уменьшаться, а нам надо, чтобы она росла, и в итоге получается, что чем меньше выражение в корне, то тем больше будет функция, а наименьшее выражение в корне может быть только 0, т.к. мы уже оговорили то, что отрицательным корень не может быть, значит sqrt(x^2+4)=0 x^2+4=0 (перенесли корень в право через знак равно) x^2=-4 x=+(-)sqrt(-4) Если ты студент и комплексные числа, то вводи мнимую единицу(x=+(-)sqrt(4i^2); x=+(-)2i), а если школьник, тогда я неправильно понял твое уравнение. Возможно, правильно будет y=7-2*sqrt(2x=4) и тогда sqrt(2x+4)=0 2x+4=0 2x=-4 x=-2 А наибольшее значение Y будет 7, т.к. это значение уже с самого начала у нас вертелось перед глазами. Можно, конечно, просто подставить -2 вместо Х
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
Объяснение:
(3х²-7х+6)-(8х²-2х)+(1-4х)=3x²-7x+6-8x²+1-4x=-5x²-9x+7