ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
Скорость катера по течению 24 км / 2 ч = 12 км/ч. Скорость катера против течения 1 км / 10 мин = 6 км / 60 мин = 6 км/ч. Это значит, что скорость катера равна 9 км/ч, скорость течения 3 км/ч. Скорость по течению 9 + 3 = 12 км/ч, против течения 9 - 3 = 6 км/ч. 1) Расстояние от А до В равно 12*5 = 60 км, а не 120. 2) Плот пройдет от расстояние А до В за 60/3 = 20 часов - это верно. 3) Катер от А до В пройдет 60 км за 5 часов по течению, а потом от В до А 60 км за 10 часов против течения. Средняя скорость равна (60+60)/(5+10) = 120/15 = 8 км/ч. ответ: Верно только 2 утверждение.
Памоему правильно удачи