и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
периметр прямоугольника P=2(a+b)
площадь прямоугольника S=a*b.
Составим систему уравнений
2(a+b)=22 a+b=11 a=11-b
a*b=24 a*b=24 (11-b)*b=24
11b-b²=24
-b²+11b-24=0
D=11²-4*(-1)*(-24)=121-96=25
b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3
Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см.
Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
ответ: стороны прямоугольника 8 см и 3 см.