Объяснение:
чтобы определить промежутки возрастания и убываения надо определить знак производной
для этого найдем производную, приравняем ее к 0
найдем корни и определим промежутки возрастания и убывания методом интервалов
y'=9x²-1=0
9x²=1
x²-1/9
x=±√(1/9)
x=±1/3
x₁=-1/3 ; x₂=1/3
нанесем корни на числовую ось и определим знаки производной на интервалах. По свойству квадратичной функции 9х²-1 так как коэффициент при х² равен 9 и 9>0 то ветки параболы направлены вверх, тогда знаки производной на интервалах будут (+) (-) (+)
там где производная >0 функция возрастает
а где производная <0 функция убывает
(-1/3)(1/3)>
y' + - +
y возрастает убывает возрастает
при х∈(-∞;-1/3]∪[1/3;+∞) функция возрастает
при х∈[-1/3; 1/3] функция убывает
х∈(-∞, -6), решение системы неравенств.
Объяснение:
Решить систему неравенств:
−x+4>0
5x<−30
Решим первое неравенство:
−x+4>0
-x> -4
x<4 знак меняется
х∈(-∞, 4)
Решения неравенства в интервале от -бесконечности до 4.
Неравенство строгое, скобки круглые.
Решим второе неравенство:
5x<−30
х< -6
х∈(-∞, -6)
Решения неравенства в интервале от -бесконечности до -6.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить оба интервала и найти пересечение решений, то есть, такое решение, которое подходит двум данным неравенствам.
Пересечение х∈(-∞, -6), это и есть решение системы неравенств.