Пусть левая и правая часть равны у. Тогда получим систему:
Рассмотрим каждое уравнение как функцию.
- возрастающая функция, так как это кубическая парабола с положительным старшим коэффициентом
- убывающая функция, так как корень нечетной степени имеет сомножителем отрицательное число
Графически возрастающая и убывающая функция могут пересекаться не более чем в одной точке.
В данном случае, понимая, что и область определения и область значений каждой функции представляют собой все действительные числа можно сказать, что такое пересечение обязательно произойдет.
Таким образом, если найден некоторый корень этого уравнения, то других корней у уравнения нет.
Подберем корень. Удобно начать проверку с "красивых значений". Например, будем выбирать х так, чтобы под знаком корня получался куб некоторого целого числа.
Пусть , то есть . Проверим, является ли это число корнем:
- не корень
Пусть , то есть . Проверим, является ли это число корнем:
- не корень
Пусть , то есть . Проверим, является ли это число корнем:
- корень
Таким образом, уравнение имеет единственный корень
(2^2)^5 / 2^9 * 3^2 = 2^10/2^9 * 3^2 =2^1 * 3^2 = 2^1 * 3^1 * 3^1 = 18^1=18. 1) При возведении степени в степень - основание остается прежним, показатели степени перемножаются. 2) При делении чисел с одинаковыми основаниями , но разными показателями степени - основание остается, а показатели степени вычитаются. При делении чисел с разными основаниями, но одинаковыми показателями степени - основание - это частное от деления чисел, а показатель степени остается. 3) При умножении чисел с одинаковыми основаниями и разными степенями, основание остается, степени складываются; при умножении чисел с разными основаниями, но одинаковыми степенями - основания перемножаются, степень остается.
Запишем уравнение в виде:
Пусть левая и правая часть равны у. Тогда получим систему:
Рассмотрим каждое уравнение как функцию.
- возрастающая функция, так как это кубическая парабола с положительным старшим коэффициентом
- убывающая функция, так как корень нечетной степени имеет сомножителем отрицательное число
Графически возрастающая и убывающая функция могут пересекаться не более чем в одной точке.
В данном случае, понимая, что и область определения и область значений каждой функции представляют собой все действительные числа можно сказать, что такое пересечение обязательно произойдет.
Таким образом, если найден некоторый корень этого уравнения, то других корней у уравнения нет.
Подберем корень. Удобно начать проверку с "красивых значений". Например, будем выбирать х так, чтобы под знаком корня получался куб некоторого целого числа.
Пусть , то есть . Проверим, является ли это число корнем:
- не корень
Пусть , то есть . Проверим, является ли это число корнем:
- не корень
Пусть , то есть . Проверим, является ли это число корнем:
- корень
Таким образом, уравнение имеет единственный корень
ответ: 3