1. ABC- треугольник, Найти S abc 2.ABCD - параллелограм, Найти S abd 3.ABCD - квадрат, Найти S abck 4.ABC - треугольник, Найти S abc 5.ABC- прямоугольный треугольник, Найти S abc
1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
x^2 - x - 12 < 0 Разложим квадратный трехчлен x^2-x-12 на множители (Квадратный трехчлен ax^2+bx+с при a>0 и D=a^2-4ac>0 можно записать как ax^2+bx+с=a(x-x1)(x-x2), где x1 и x2 -корни уравнения ax^2+bx+c=0) x^2-x-12=0 D =1+48 =49 x1=(1-7)/2=-3 x2=(1+7)/2=4 Поэтому можно записать x^2-x-12 =(x+3)(x-4) Запишем неравенство снова x^2-x-12 < 0 или (x+3)(x-4) < 0 Решим неравенство методом интервалов Найдем значение х где множители меняют свой знак x+3=0 или х = -3 х-4=0 или х=4 На числовой прямой отобразим знаки левой части неравенства. Знаки можно определить методом подстановки. Например при х=0 х+3>0, а x-4<0 поэтому их произведение меньше нуля и так далее. + 0 - 0 +. !! -3 4 . Поэтому неравенство имеет решение если х принадлежит [-3;4] ответ:[-3;4]
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2