М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
К1а2т3я456
К1а2т3я456
20.03.2020 08:12 •  Алгебра

Y=-x^2-2x+3 постройте график функции

👇
Ответ:
zuzin77
zuzin77
20.03.2020

Объяснение:

Можно оценить хотя бы на 4?


Y=-x^2-2x+3 постройте график функции
4,5(47 оценок)
Открыть все ответы
Ответ:
HatryGG
HatryGG
20.03.2020
Система уравнений:
(х+2)*у=21 - 1 уравнение
4х+у=23 - 2 уравнение

1) Выражаем из второго уравнения y и подставляем его в первое уравнение.
(x+2)*(23-4x)=21
y=23-4x

2) Решаем первое уравнение:
(х+2)*(23-4х)=21
23х-4х^2+46-8х-21=0
-4х^2+15х+25=0
4х^2-15х-25=0
D=(-15)^2-4*4*(-25)=225+400=625
x1=5, x2=-1,25

3)При решении первого уравнения поличилось два корня: 5 и -1,25. Возьмём первый корень, чтобы подставить его во второе уравнение и найти у:
x=5
y=23-4*5=3

Таким образом, решением этой системы уравнений будет являться: (5;3).
4,6(29 оценок)
Ответ:
alixegp073ii
alixegp073ii
20.03.2020

Допустим, что \cos x = 0. Тогда имеем уравнение -2\sin^2x=2, не имеющее решений, поскольку в левой части число неположительное, а в правой - положительное, т.е. левая часть никак не может быть равна правой. Т.е. \cos x\neq 0

Преобразуем правую часть:

2 = 2\cdot 1=2(\sin^2x+\cos^2x)=2\sin^2x+2\cos^2x.

Перенесем все влево с противоположным знаком:

3\cos^2x+3\sin x\cos x-2\sin^2x-2\sin^2x-2\cos^2x=0;\\\\\cos^2x+3\sin x\cos x-4\sin^2x=0.

Поскольку \cos x\neq 0, можем разделить обе части уравнения на \cos^2 x. В итоге имеет равносильное исходному уравнение

1+3tg x - 4tg^2x=0|\cdot (-1)

4tg^2x - 3tg x - 1 = 0.

Заметим, что tg x = 1  является корнем уравнения относительно тангенса. Тогда по теореме Виета второй корень равен -\frac{1}{4}.

Соответственно, имеем два случая: или tg x =1, или tg x = -\frac{1}{4}.

1 случай.

 tg x =1;\\\\x=arctg(1) +\pi k, k\in{Z};\\\\x=\frac{\pi}{4} +\pi k, k\in{Z}.

2 случай.

tg x =-\frac{1}{4};\\\\x=arctg(-\frac{1}{4}) +\pi n, n\in{Z};\\\\x=-arctg\frac{1}{4} +\pi n, n\in{Z}.

Имеем две серии корней.

ОТВЕТ:  π/4 + πk, k ∈ Z;   -arctg(1/4) + πn, n ∈ Z.

4,5(17 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ