Пусть скорость течения реки (х) км/час собственная скорость лодки (у) км/час ---это и скорость в стоячей воде))) тогда скорость ПО течению будет (у+х) км/час скорость ПРОТИВ течения будет (у-х) км/час t = S / v время = путь / скорость на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов))) (54 / (у+х)) + (48/у) = 6 (64/у) - (36/(у+х)) = 2 система 48х + 102у = 6*у*(х+у) 64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у) 32х + 14у = у*(х+у)
8х + 17у = 32х + 14у 24х = 3у у = 8х
8х + 17*8х = 8х*(х+8х) 18х = 9х² 2х = х² х² - 2х = 0 х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла))) х = 2 (км/час) ---скорость течения реки у = 8х = 16 (км/час) собственная скорость лодки ПРОВЕРКА: (54 / 18) + (48 / 16) = 3+3 = 8 часов))) 64 / 16 = 4 часа в стоячей воде двигалась лодка 36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
Примем весь объем работы за 1. Скорость первой бригады - х, скорость второй бригады у. Тогда за 3,5 часа первая бригада сделала 3,5 х работы. За 6 часов вторая бригада сделала 6у работы. Все это равно всему объему работы, то ест 1. составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе. По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая. поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5; x - y = 5xy; (2) Получили 2 уравнения с 2 неизвестными. Выразим y через x во втором уравнении. x = 5xy + y; x = y(5x + 1) ; y = x /(5x+1);
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12. Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней. Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней. ответ 7 дней для 1 бригады и 12 дней для второй бригады. 12 можно было бы найти проще 5+7 = 12
Объяснение:
...... .