Рейс туда-сюда, это два расстояния между пристанями, т.е. катер проплыл 2А, где А - расстояние между пристанями. Когда катер плывёт по течению, то течение плыть катеру, т.е. к собственной скорости катера добавляется скорость течения, т.е. в одном направлении у катера будет скорость 18+2=20 км/ч. А в другую сторону наоборот: течение мешает плыть катеру, т.е. скорость катера против течения будет: 18-2=16 км/ч. Получается первую половину пути-туда, катер проплыл за такое время: А/20, а вторую половину-обратно катер проплыл вот за какое время: А/16. Полное время пути катера 4,5 часа, т.е. можно составить уравнение относительно времени: А/20 + A/16 = 4,5 Приведём к общему знаменателю: A*16+20*A = 45 16*20 10
Средняя скорость - это весь путь S, деленный на всё время T. V = S/T
1) Если он шел половину пути S/2 со скоростью v1 = 4 км/ч, и ещё S/2 с v2 = 6 км/ч, то он затратил время t1 = (S/2) / 4 = S/8 ч, и t2 = (S/2) / 6 = S/12 ч. А всего T = t1 + t2 = S/8 + S/12 = 3S/24 + 2S/24 = 5S/24 средняя скорость v = S / (5S/24) = 24/5 = 48/10 = 4,8 км/ч.
2) Если он шел половину времени T/2 с v1 = 4 км/ч, и ещё T/2 c v2 = 6 км/ч, то он путь s1 = T/2*4 = 2T и s2 = T/2*6 = 3T S = s1 + s2 = 2T + 3T = 5T Средняя скорость V = S/T = 5T/T = 5 км/ч.
На самом деле, если он шел половину времени с v1, и еще половину времени с v2, то средняя скорость V = (v1 + v2)/2. И эта средняя скорость V всегда больше, чем в 1 пункте. V > v.
ответ: на первую прогулку скорость 4,8 км/ч. На вторую скорость 5 км/ч.
График функции не проходит ни через одну из перечисленных точек