Графически мы имеем 2 прямоугольных треугольника с площадями по 150 каждый и гипотенузами по 25. площадь прямоуг. треуг-ка S=ab/2, а квадрат гипотенузы (25) равен сумме квадратов катетов (искомых сторон). тогда имеем систему уравнений: ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0 Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0 Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?) корни ур-я ищем по формуле и получаем два корня уравнения, равные 225 и 400. Это, как мы помним, a^2, извлекая из каждого значения кв. корень получим два значения а: а1=15, а2=20. Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно
А) D=10^2 - 4 x 1 x 21 =100 - 96 = 4 x1,2=10+-2/2 x1=6 x2=4 дальше рисуем рисунок и расставляем цифры, так чтобы 4 был перед 6, нужно чтобы между ними было небольшое расстояние, находим решение с метода интервал (это полуокружности, которые соединяются либо 2 ближайшими точками, либо (если это начало или конец) 1 точкой, и как бы продолжить ее не много (но не соединять ни с чем), в данном случае нужно ставить не точки, а выколотые , то есть не разукрашенные), берем значения которые стоят до 4 - 0,1, 2, 3 и др ( не важно), если мы подставим под уравнение, то решение будет положительное (пишем наверху полукруга +), а дальше они чередуются (то есть + - + - +). Нам нужно, то решение, которое больше нуля - положительное. Значит ответ будет - от - бесконечности до 4 (знак объединения (полукруг, направленный вверх)) от 6 до + бесконечности. б) x^2 = 9 x = +-3 рисуем рисунок и определяемые возможные значения (как рисовать было написано выше в а)) с метода интервалов (точки в данном случае не выколотые, а закрашенные), у нас получается, что до -3 - положительно (+), от -3 до 3 - отрицательное, от 3 и больше - положительно Нам нужны значения, которые меньше 0, то есть ответ - от -3 до 3
ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0
Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0
Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?)
корни ур-я ищем по формуле
Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно