ответ: (√х-6)²-1=0 равносильно уравнению 2x-6√x=6√x+x-35.
Объяснение:
Два уравнения будут равносильными, если они имеют одно и то же множество корней (в случае кратных корней кратности соответствующих корней должны совпадать.)
Решим данное уравнение.
2x-6√x=6√x+x-35; x-12√x+35=0, по Виета √х=5⇒х=25; √х=7⇒х=49, т.е. данное уравнение имеет два корня 25 и 49.
Проверим сначала, являются ли эти корни корнями оставшихся уравнений. 1) (√25+5)²-1=0, т.к. 99≠0, то второй корень можно и не проверять.
2) √(25+6)²-1=0; т.к. 120≠0, второй корень тоже не проверяем.
3) т.к. при переносе вправо единицы получим (√х+6)²=-1, чего быть не может, то это уравнение вообще не имеет корней.
Т.е. первые три уравнения не равносильны данному. Проверим четвертое.
4) (√25-6)²-1=0; 0=0; ( √49-6)²-1=0; 0=0- верное равенство. Значит, корни четвертого уравнения являются корнями первого. Других корней у последнего уравнения нет , т.к. (√x-6)²-1=0 можно упростить , получим
х-12√x+36-1=0;х-12√x+35=0- а это и есть первое уравнение.
Вывод четвертое уравнение равносильно уравнению, данному в условии задачи.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.