минулого літа я з батьками відпочивав на морі. ми часто приходили на пляж поблизу невеличкої пристані. хлопчикам дуже стрибати там у воду. якось я помітив, що десь по обіді біля пристані з'являється величезний чорний собака. у нього довга шерсть, блискучі карі очі. за такої літньої спеки він відразу кидається в море й пливе ближче до того місця, де збираються стрибуни. там він очікує хлопчиків чи дівчаток, які будуть стрибати у воду. спершу було незрозуміло, чому він пливе саме туди. та підійшовши ближче, я усе второпав. собака чекає, поки хтось стрибне, випірне, а він уже поруч, і дітлахи із задоволенням хапаються за його спину, загривок або просто за шерсть, навіть за хвоста. і дар (так кличуть собаку) із усіх сил прямує до берега. усім дуже весело. одного разу прийшов ігор іванович — хазяїн собаки, і я запитав про дивну поведінку дара. ігор іванович розповів, що це сталося кілька років тому. маленька дівчинка стояла на пристані, оступилася і впала у воду. дорослі кинулися їй, але дар випередив усіх. дівчинка вхопилася рученятами за шерсть собаки, а він із усіх сил чимдуж поплив до берега. і з тих пір він нібито рятує всіх дітей, які бавляться на пристані. мені теж було приємно пливти до берега, тримаючись за чорну спину дара.
x = arctg(-0.4)+\pi kx=arctg(−0.4)+πk ; x = \frac{\pi }{4} + \pi nx=
4
π
+πn
Пошаговое объяснение:
5sin^{2}x - 3sinxcosx - 2cos^{2}x = 05sin
2
x−3sinxcosx−2cos
2
x=0
Разделим уравнение на cos^{2}xcos
2
x :
5tg^{2}x - 3tgx - 2 = 05tg
2
x−3tgx−2=0
Проведем замену t = tgx:
5t^{2} - 3t - 2 = 05t
2
−3t−2=0
Решим квадратное уравнение методом коэффициентов:
a + b + c = 0a+b+c=0
5 - 3 - 2 = 05−3−2=0 ⇒ t_{1} = 1t
1
=1 ; t_{2} = c/a = -0.4t
2
=c/a=−0.4
Проведем обратную замену:
tgx = 1tgx=1
x = arctg 1x=arctg1
x = \frac{\pi }{4} + \pi nx=
4
π
+πn , где n ∈ Z
tgx = -0.4tgx=−0.4
x = arctg(-0.4)x=arctg(−0.4)
x = arctg(-0.4)+\pi kx=arctg(−0.4)+πk , где k ∈ Z