расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
Объяснение:
Квадратное уравнение можно представить в виде:
a(x-x1)(x-x2)=0, где x1 и x2 - корни уравнения;
Раскроем скобки, тогда a*x^2-a*x(x1+x2)+a*x1*x2=0 (1)
у нас выражение x^2-x-p=0 (2)
Если сравнить 2 выражения.
Коэффициент в (2) перед x^2=1, отсюда следует, что в (1) a=1.
(1) принимает вид:
x^2-x*(x1+x2)+x1*x2=0
Сравниваем коэффициенты перед x, получаем
x1+x2=1 (3)
сравниваем свободные члены
-p=x1*x2 (4)
также по условию
x1^2+x2^2=25; (5)
тут 2 варианта, решить систему выше или можно предположить решение;
Предположим, что x1=-4, x2=5;
Тогда удовлетворяются все уравнения условия - (3), (5);
получаем, что p=-(-4)*(5)=20