1. Пусть х-количество 2-х местных байдарок,
тогда 12-х -количество 3-х местных байдарок.
В двухместных байдарках разместилось 2х человек,
а в трёхместных 3(12-х) человек.
По условию задачи всего было 29 человек.
Составляем уравнение:
2х+3(12-х)=29
2х+36-3х=29
-х=29-36
-х=-7
х=7- было 2-х местных байдарок
2.Запишите уравнение прямой, паралельной данной прямой и проходящей через данную точку А: 3х+4у=12, А (8;-8)
3х+4у=12
4у=12-3х
у=3-3/4 х
k=-3/4
у=kx+b
A(8;-8)
-8=-3/4*8+b
b=-8+12=4
y=-3/4x+4 -уравнение прямой, паралельной данной прямой и проходящей через данную точку А.
3.Запишите уравнение прямой, которая проходит через две данные точки: А (1;3), В (5;-4)
вектор АВ(5-1;-4-3)=(4;-7)
(х-1)/4 = (у-3)/-7
-7х+7=4у-12
7х+4у-19=0 - искомое уравнение прямой
ответ: 1 час 20 минут.
Объяснение:
Бассейн наполняется водой через одну трубу за 4 ч, через вторую трубу — за 2 часа.
За какое время наполнится бассейн, если открыть одновременно обе трубы?
Решение.
производительность 1 трубы равна 1/4 часть бассейна в час
производительность 2 трубы равна 1/2 часть бассейна в час
Общая производительность двух труб равна
1/4 + 1/2 = 1/4 + 2/4 = 3/4 часть бассейна в час
если открыть одновременно обе трубы, то бассейн наполнится за
1: 3/4 = 1*4/3 = = 1 1/3 часа = 1 (1/3*60)=1 час 20 минут