Зависимость между переменными y и x выражена формулой y=kx. Найди значение коэффициента k и выясни, возрастает или убывает линейная функция y=kx, если y= 45 при x= −9.
ответ: линейная функция y=kx (убывает или вовзрастает) и коэффициент k= .
1) ООФ : x∈(-∞;∞) ; y =x² -3x =x² -2x*(3/2) +(3/2)² - (3/2)² = - 9/4 + (x -3/2)² . y min =9/4 , если x=3/2 . график функции _парабола, вершина в точке B(3/2 ; -9/4) иначе B(1, 5 ; - 2, 25) , ветви параболы направлены вверх . Функция убывает(↓) при x ∈( -∞;3/2] и возрастает(↑) при x ∈ [3/2 ;∞) . Пересечение с осью x : y=0⇔x² -3x=0 ⇔x(x -3) =0 ⇒x₁ =0 ,x₂ =3 . O(0;0) ,A(3;0) . Пересечение с осью y : x =0 ⇒y=0 это уже было найдена ( O(0,0) проходить через начало координат) . Bот эти три характерные точки графики. 2) y =2x -6 ; ООФ : x∈(-∞;∞) ; Возрастающая функция т.к k =2 >0 . График функции прямая линия ,следовательно достаточно задавать любые две точки. например: у =0⇔2x -6 =0⇒x =3 . A(3;0). x =0⇔у =2*x -6 = -6⇒ С(0 ; -6). Линия проходит через точки A(3;0) и С(0 ; -6).
1)выражение под корнем должно быть больше или равно нулю(x - 3)(8 - 2x) ≥ 0(x - 3)(x - 4) = 0⇒ x ∈ [3;4]2) (14x + 7)(4 - 10x) ≥ 0⇒ x ∈ [-1/2;2/10] 3) (0.1x + 1)(6 - 2x) ≥ 0(x + 10)(3 - x) ≤ 0⇒ x ∈ [-10;3]4) (8 - 16x)(x - 9)x ≥ 0 (x - 0.5)(x - 9)x ≤ 0⇒ x ∈ (-∞;0]∪[1/2;9] (∪ - знак объединения)5) выражение под корнем в знаменателе должно быть больше или равно нулю, а также сам знаменатель не должен быть равен нулю(x - 4)(x - 1)(x - 3)x > 0 ⇒ x ∈ (-∞;0) ∨ (1;3) ∨ (4;+∞)6) (x + 1)(x - 5)(x + 3)x > 0 ⇒ x ∈ (-∞;-3)∪(-1;0)∪(5;+∞)Если естественная область определения - это те значения переменной, при которых выражение имеет смысл.
y=45 ; x=-9
45=k(-9)
k=-5
При k>0 линейная функция возрастает.
При k<0 — убывает