С правой части у обоих уравнений -1, следовательно их можно приравнять. x^2+3xy-8y^2=x^2-xy-4y^2 перенесём всё влево: x^2+3xy-8y^2-x^2+xy+4y^2=0 x^2 сокращается; остаётся: 3xy+xy-8y^2+4y^2=0 4xy-4y^2=0 4y можно вынести: 4y(x-y)=0 То есть 4y=0, следовательно y=0 И x-y=0, следовательно x=y теперь подставляем эти "ответы в первое или второе уравнение (неважно) Сначала вместо y будем ставить 0: x^2+3x*0-8*0^2=-1 x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число) Теперь вместо y будем подставлять x (x=y) x^2+3x^2-8x^2=-1 -4x^2=-1 x^2=1/4 x1=1/2 и y1=1/2 x2=-1/2 и y2=-1/2 ответ: (1/2;1/2) и (-1/2;-1/2)
количество вариантов будет 24, т. к. это перестановка 4 команд по 4 местам, а это факториал: 4! = 4*3*2 = 24. На первое место будут претендовать 4 команды, на второе уже 3, на третье - 2, а на четвертое - 1. У тебя цифры 3, 5, 7, 9. Т. е. их, получается, 4. В трёхзначных числах цифры могут повторяться (ну оно понятно, система-то позиционная). Юзаем комбинаторный принцип умножения. Цифр четыре, позиций три, значит ответ = 4*4*4 = 64. Раз номер первый нечетный, то последняя должна быть четной т. е. только 314 т. к. 143 первой быть не может. 86 страниц получается. Всего шаров = 2 + 3 = 5 Черных шаров = 2 Вероятность вытащить черный шар = 2/5 Вероятность того, что второй шар будет тоже черным = (2-1)/(5-1) = 1/4, так как один шар уже вытащен. Исходная вероятность равна произведению этих двух вероятностей = 1/4 2/5 = 2/20 = 0.1
x^2+3xy-8y^2=x^2-xy-4y^2
перенесём всё влево:
x^2+3xy-8y^2-x^2+xy+4y^2=0
x^2 сокращается; остаётся:
3xy+xy-8y^2+4y^2=0
4xy-4y^2=0
4y можно вынести:
4y(x-y)=0
То есть 4y=0, следовательно y=0
И x-y=0, следовательно x=y
теперь подставляем эти "ответы в первое или второе уравнение (неважно)
Сначала вместо y будем ставить 0:
x^2+3x*0-8*0^2=-1
x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число)
Теперь вместо y будем подставлять x (x=y)
x^2+3x^2-8x^2=-1
-4x^2=-1
x^2=1/4
x1=1/2 и y1=1/2
x2=-1/2 и y2=-1/2
ответ: (1/2;1/2) и (-1/2;-1/2)