Ax+By+C = 0, где A, B, C - это константы, (A и B одновременно не равны нулю) Это общее уравнение прямой на координатной плоскости XOY. Показать (или доказать) это можно разными Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6. Первая точка это x_1=0, и y_1=-6. Аналогично находим вторую точку прямой: положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3. Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0. Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.
A(2 ; 4) 4=2^2 точка А принадлежит B(3 ;6) 6<3^2 точка B не принадлежит C(4 ; 8) 8<4^2 точка C не принадлежит D(-3 ; 9) 9= (-3)^2 точка D принадлежит R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит
х=5
Объяснение:Подставить в у=0, перенисти пример в лево,сменить знаки,сократить уравнение,перенисти коснстанту в правую часть,вычеслите