xy + x - y = 7 xy + x - y = 7 Замена: xy = а; x - y = b
x²y - xy² = 6 xy(x - y) = 6
a + b = 7
ab = 6 Систему решаем, применив т. Виета.
a₁ = 1 или a₂ = 6
b₁ = 6 b₂ = 1
Обратная замена:
1) xy = 1 или 2) xy = 6
x - y = 6 x - y = 1
Решаем каждую систему совокупности:
1) xy = 1 (6 + y)y = 1; 6y + y² = 1; y² + 6y - 1 = 0;
x = 6 + y y₁ = -3 + √10; y₂ = -3 - √10
x₁ = 3 + √10; x₂ = 3 - √10
(3 + √10; -3 + √10), (3 - √10; -3 - √10).
2) xy = 6 (y + 1)y = 6; y² + y - 6 = 0;
x = y + 1 y₁ = -3; y₂ = 2
x₁ = -2; x₂ = 3
(-3; -2), (3; 2)
ответ: (3 + √10; -3 + √10), (3 - √10; -3 - √10), (-3; -2), (3; 2).
Степень с рациональным показателем Степень с рациональным показателем. Решение примеровЛекция: Степень с рациональным показателем и её свойстваСтепень с рациональным показателемСтепень с рациональным показателем - это та, в показателе которой находится конечная обыкновенная или десятичная дробь. Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.Свойства степени с рациональным показателемВсе, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.ap * aq = ap+q.Например:2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.ap / aq = ap-q .Например,3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.(ap )q = ap*qНапример,4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.(a * b)p = ap * bp5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.(a / b)p = ap / bq6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.Например,Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень
-12x²y+18xy²= -6xy*(2x-3y)