F(x)=y а) y= 1.5 - 3x - линейное уравнение, график - прямая. Составим таблицу значений (достаточно двух точек). х 0 1 у 1,5 -1,5 Теперь просто проводим прямую через эти точки б) у= 4,5х - линейное уравнение, график - прямая. Составим таблицу значений (достаточно двух точек). х 0 1 у 0 4,5 Теперь просто проводим прямую через эти точки в) у= 10/х - обратная пропорциональность, график - гипербола. Составим таблицу значений. х 1 2 5 10 И теперь возьмем те же отрицательные числа у 10 5 2 1 Теперь плавной линией соединяем положительные точки с положительными, а отрицательные - с отрицательными так, чтобы эти линии не пересекали и не касались осей. г) у= -1/х обратная пропорциональность, график - гипербола. Составим таблицу значений. х 4 2 1/2 1/4 И теперь возьмем те же отрицательные числа у 1/4 1/2 2 4 Теперь плавной линией соединяем положительные точки с положительными, а отрицательные - с отрицательными так, чтобы эти линии не пересекали и не касались осей.
Используя свойства числовых неравенств,исследуйте функцию на монотонность:y=x^2-3 y(x+dx)-y(x)=((x+dx)^2-3)-(x^2-3)=x^2+dx^2+2xdx-3-x^2+3=2xdx+dx^2 dx>0; 2x+dx>0 при x >0, dx - бесконечно малая. (-∞;0) - функция убывает (большему значению аргумента соответствует меньшее значение функции) (0;∞) - функция возрастает y=x^2+2x+1,x>-1 (x+dx)^2+2(x+dx)+1-x^2-2x-1=x^2+dx^2+2xdx+2x+2xdx+1-x^2-2x-1= =dx(dx+2x+2) dx>0; 2x+2>0 при x>-1 dx+2x+2>0 dx(dx+2x+2)>0 по определению функция возрастает на данном интервале Исследуйте функцию на ограниченность: y=-2x^2-6x+15 квадратичная функция, коэф-ент при х^2 отрицателен вершина параболы х=-b/2a=6/-4=-1,5 y(-1.5)=-2*2,25-6*(-1.5)+15=-4,5+24=19,5 функция ограничена сверху (-∞;19,5) Исследуйте функцию на четность: y=5-3x^3. y(-x)=5-3*(-x)^3=5+3x^3 функция не является ни четной ни нечетной
4-4c+c^2-c^2-4c=4-8c;
При c=0,5:
4-8*0,5=4-4=0.