корень из 6 и корень 4 степени из 35 Внесем (корень из 6) ещераз под кв корень и получим корень 4 степени из 36 36>35, поэтому корень из 6 больше корень 4 степени из 35
Исследовать функцию: • Область определения функции: • Точки пересечения с осью Ох и Оу: Точки пересечения с осью Ох: нет. Точки пересечения с осью Оу: Нет. • Периодичность функции. Функция не периодическая. • Критические точки, возрастание и убывание функции: 1. Производная функции: 2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума х=1 - точка минимума
f(1) = 1 - Относительный минимум f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
• Точка перегиба: Очевидно что точки перегиба нет, т.к.
1) (x+2)(x-3)-x(x-1)=90 x^2+2x-3x-6-x^2+x=90 0х=96 Действительных решений нет ответ: ∅
2) x^2-8x+20 Рассмотри график функции x^2-8x+20. Найдем нули, где функция пересекает ось х x^2-8x+20=0 D=64-4*20=64-80=-16 Действительных решений нет, значит график у=x^2-8x+20 не пересекает ось Ох Графиком функции у=x^2-8x+20 является парабола. Т. к при старшей степени (x^2) стоит положительный коэффициент = 1, то ветви параболы направлены вверх. Из этого следует, что график у = x^2-8x+20 лежит выше оси Ох и принимает только положительные значения
Внесем (корень из 6) ещераз под кв корень и получим корень 4 степени из 36
36>35, поэтому
корень из 6 больше корень 4 степени из 35