М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PomoshnikYa
PomoshnikYa
10.04.2022 11:54 •  Алгебра

Число -8 является корнем уравнения X² + 2x + c = 0
Найдите второй корень уравнения и значение c, используя теорему Виета.

👇
Ответ:
Mashylina
Mashylina
10.04.2022

ответ:x=-1

Объяснение:

4,7(22 оценок)
Ответ:
тамила52
тамила52
10.04.2022
Вот ответ
Число -8 является корнем уравнения X² + 2x + c = 0 Найдите второй корень уравнения и значение c, исп
4,5(16 оценок)
Открыть все ответы
Ответ:
йцццу
йцццу
10.04.2022
1)d(y)=r 2)y(-x)=(-x)^3-6(-x)^2+2(-x)-6=-x^3-6x^2-2x-6-функция ни чётная, ни нечётная, без периода 3)oy: x=0,y(0)=0^3-6*0^2+2*0-6=0-0+0-6=-6 a(0; -6) ox: y=0,x^3-6x^2+2x-6=0 x=5, b(5,; 0) ∞; 5, y< 0 (5,; ∞) y> 0 5)y'=3x^2-12x+2 3x^2-12x+2=0 d=144-24=120> 0 x1,2=(12±2√30)/(2*3)=(12±2√30)/6=2± (-∞; 2- )∪(2+ ; ∞) растёт (2- ; 2+ ) не растёт xmax=2- ,xmin=2+ 6)асимптоты нет 7)! 1/3_h/ubwwf7wwf7rgzhf23/ap9g/2dft0qt7e9dbj7u7ub39jzp9w/2sttsxs4p4/f0i/ [email  protected]= по-братски дай лучший ответ
4,5(85 оценок)
Ответ:
Марк2992
Марк2992
10.04.2022
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ