См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
Два графика линейной функции имеют вид: у₁=к₁х₁+С₁ и у₂=к₂х₂+С₂
они будут пересекаться если не параллельны, а чтобы они не были параллельны К₁ не должен быть равен К₂, потому что если К₁=К₂ - графики параллельны (например у=5х+2 и у=5х-10 будут параллельны , так как к₁=к₂=5 ) чтобы найти точки пересечения графиков, надо привести их к виду у=кх+С, приравнять правые части и из полученного уравнения найти Х, потом Х подставить в любое из уравнений и найти У, точка с этими координатами (Х; У) - и есть точка пересечения найти точку пересечения графиков у=-3х+3 и у=2х+8 приравняем правые части -3х+3 = 2х+8 все с Х перенесем влево, все без икс - вправо -3х-2х=8-3 -5х=5 х=-1, подставим х=-1 в любое уравнение , например у=-3*(-1)+3 =6, у=6 х=-1, у=6 А(-1;6) точка пересечения
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки (0;0) удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т. р=-1